Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 498
Filter
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338725

ABSTRACT

Nitroxides are stable free radicals that have antioxidant properties. They react with many types of radicals, including alkyl and peroxyl radicals. They act as mimics of superoxide dismutase and stimulate the catalase activity of hemoproteins. In some situations, they may exhibit pro-oxidant activity, mainly due to the formation of oxoammonium cations as products of their oxidation. In this review, the cellular effects of nitroxides and their effects in animal experiments and clinical trials are discussed, including the beneficial effects in various pathological situations involving oxidative stress, protective effects against UV and ionizing radiation, and prolongation of the life span of cancer-prone mice. Nitroxides were used as active components of various types of nanoparticles. The application of these nanoparticles in cellular and animal experiments is also discussed.


Subject(s)
Antioxidants , Oxidative Stress , Mice , Animals , Antioxidants/pharmacology , Oxidation-Reduction , Free Radicals/pharmacology , Nitrogen Oxides/pharmacology , Cyclic N-Oxides/pharmacology
2.
Cancer Prev Res (Phila) ; 17(4): 157-167, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38286439

ABSTRACT

Cigarette smoke is a rich source of free radicals that can promote oxidative stress and carcinogenesis, including head and neck squamous cell carcinoma (HNSCC) development; importantly, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-iso-prostaglandin F2α (8-isoprostane) are biomarkers of oxidative stress. Several mechanisms, including the antioxidant properties of black raspberry (BRB), account for their chemopreventive effects. In the present clinical trial, we tested the hypothesis that BRB administration reduces biomarkers levels of oxidative stress in buccal cells and urine of smokers. One week after enrolling 21 smokers, baseline buccal cells and urine samples were collected before the administration of BRB lozenges for 8 weeks (5/day, 1 gm BRB/lozenge). Buccal cells and urine samples were collected at the middle and the end of BRB administration. The last samples were collected after the BRB cessation (washout period). We analyzed levels of 8-oxodG and 8-isoprostane (LC/MS-MS), urinary cotinine (ELISA), and creatinine (spectrophotometry). BRB significantly reduced the levels of 8-oxodG by 17.08% (P = 0.00079) in buccal cells and 12.44% (P = 0.034) in urine at the middle of BRB administration as compared with baseline; the corresponding values at the end of BRB administration were 16.46% (P = 0.026) in buccal cells and 25.72% (P = 0.202) in urine. BRB had no significant effect on the levels of urinary 8-isoprostane. BRB's capacity to inhibit 8-oxodG formation of smokers' buccal cells and urine is clearly evident and the reduction in 8-oxodG suggests that antioxidant abilities are central to BRB's HNSCC chemopreventive properties. PREVENTION RELEVANCE: Cigarette smoke contains highly active components namely free radicals that can promote oxidative stress and oral cancer. We found that black raspberry (BRB) inhibited the formation of oxidative stress markers in the oral cavity and urine of smokers suggesting the antioxidant abilities of BRB in preventing oral cancer.


Subject(s)
Head and Neck Neoplasms , Mouth Neoplasms , Rubus , Humans , 8-Hydroxy-2'-Deoxyguanosine/pharmacology , 8-Hydroxy-2'-Deoxyguanosine/therapeutic use , Antioxidants/pharmacology , Biomarkers/urine , Deoxyguanosine/pharmacology , Deoxyguanosine/therapeutic use , Deoxyguanosine/urine , Free Radicals/pharmacology , Free Radicals/therapeutic use , Mouth Mucosa/pathology , Mouth Neoplasms/etiology , Mouth Neoplasms/prevention & control , Mouth Neoplasms/drug therapy , Oxidative Stress , Smokers , Squamous Cell Carcinoma of Head and Neck
3.
Mol Neurobiol ; 61(1): 188-199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37596436

ABSTRACT

Retinopathy fails to halt even after diabetic patients in poor glycemic control try to institute tight glycemic control, suggesting a "metabolic memory" phenomenon, and the experimental models have demonstrated that mitochondria continue to be damaged/dysfunctional, fueling into the vicious cycle of free radicals. Our aim was to investigate the role of removal of the damaged mitochondria in the metabolic memory. Using human retinal endothelial cells (HRECs), incubated in 20 mM D-glucose for 4 days, followed by 5 mM D-glucose for 4 additional days, mitochondrial turnover, formation of mitophagosome, and mitophagy flux were evaluated. Mitophagy was confirmed in a rat model of metabolic memory where the rats were kept in poor glycemic control (blood glucose ~ 400 mg/dl) for 3 months soon after induction of streptozotocin-induced diabetes, followed by 3 additional months of good control (BG < 150 mg/dl). Reversal of high glucose by normal glucose had no effect on mitochondrial turnover and mitophagosome formation, and mitophagy flux remained compromised. Similarly, 3 months of good glycemic control in rats, which had followed 3 months of poor glycemic control, had no effect on mitophagy flux. Thus, poor turnover/removal of the damaged mitochondria, initiated during poor glycemic control, does not benefit from the termination of hyperglycemic insult, and the damaged mitochondria continue to produce free radicals, suggesting the importance of mitophagy in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Hyperglycemia , Humans , Rats , Animals , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Rats, Wistar , Mitochondria/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Free Radicals/metabolism , Free Radicals/pharmacology
4.
Vet Res Commun ; 48(1): 317-327, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37684400

ABSTRACT

Aflatoxins, particularly AFB1, are the most common feed contaminants worldwide, causing significant economic losses to the livestock sector. The current paper describes an outbreak of aflatoxicosis in a herd of 160 male young goat kids (3-4 months), of which 68 young kids succumbed over a period of 25 days after showing neurological signs of abnormal gait, progressive paralysis and head pressing. The haematobiochemical investigation showed reduced haemoglobin, leucocyte count, PCV level, increased levels of AST, ALT, glucose, BUN, creatinine and reduced level of total protein. Grossly, kids had pale mucous membranes, pale and swollen liver; right apical lobe consolidation, and petechiation of the synovial membrane of the hock joints. The microscopic changes were characterized by multifocal hemorrhages, status spongiosus/ vacuolation, vasculitis, focal to diffuse gliosis, satellitosis, and ischemic apoptotic neurons in different parts of the brain and spinal cord. These changes corresponded well with strong immunoreactivity for AFB1 in neurons, glia cells (oligodendrocytes, astrocytes, and ependymal cells) in various anatomical sites of the brain. The higher values of LPO and reduced levels of antioxidant enzymes (Catalase, SOD, GSH) with strong immunoreactivity of 8-OHdG in the brain indicating high level of oxidative stress. Further, the higher immunosignaling of caspase-3 and caspase-9 in the brain points towards the association with intrinsic pathway of apoptosis. The toxicological analysis of feed samples detected high amounts of AFB1 (0.38ppm). These findings suggest that AFB1 in younger goat kids has more of neurotoxic effect mediated through caspase dependent intrinsic pathway.


Subject(s)
Brain Diseases , Goat Diseases , Male , Animals , Goats/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Apoptosis , Oxidative Stress , Liver/metabolism , Free Radicals/metabolism , Free Radicals/pharmacology , Brain Diseases/metabolism , Brain Diseases/veterinary , Goat Diseases/chemically induced
5.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139345

ABSTRACT

There are extensive studies that confirm the harmful and strong influence of oxidative stress on the skin. The body's response to oxidative stress can vary depending on the type of reactive oxygen species (ROS) or reactive nitrogen species (RNS) and their metabolites, the duration of exposure to oxidative stress and the antioxidant capacity at each tissue level. Numerous skin diseases and pathologies are associated with the excessive production and accumulation of free radicals. title altered Both categories have advantages and disadvantages in terms of skin structures, tolerability, therapeutic performance, ease of application or formulation and economic efficiency. The effect of long-term treatment with antioxidants is evaluated through studies investigating their protective effect and the improvement of some phenomena caused by oxidative stress. This article summarizes the available information on the presence of compounds used in dermatology to combat oxidative stress in the skin. It aims to provide an overview of all the considerations for choosing an antioxidant agent, the topics for further research and the answers sought in order to optimize therapeutic performance.


Subject(s)
Antioxidants , Dermatology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Free Radicals/pharmacology
6.
J Trace Elem Med Biol ; 80: 127284, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37657266

ABSTRACT

BACKGROUND: Lead impairs female reproductive health because it can induce oxidative stress. Zinc as an antioxidant produces an enzyme system that helps neutralize free radicals. α-Tocopherol has an antagonistic effect that reduces oxidative stress. This study aimed to demonstrate the effects of zinc (Zn) and α-tocopherol on the ovarian endogenous antioxidants and antral follicles of albino rats (Rattus norvegicus) exposed to lead acetate (Pb(C2H3O2)2). METHODS: Twenty-five female Wistar rats were divided into five groups, namely groups K (control), P0, P1, P2, and P3. Following exposure and treatment for 21 days with different combinations, the albino rats were necropsied, and their ovaries were removed for subsequent histopathological preparations and endogenous antioxidant analysis. Observations were made on the ovary, including an antral follicle count and diameter calculations. Analysis of the superoxide dismutase (SOD) levels (560 nm wavelength) and malondialdehyde MDA-TBA (532 nm wavelength) were performed by a spectrophotometer. The data were analyzed using a one-way ANOVA and least significant difference (LSD) test with the SPSS V24 software. RESULTS: The highest SOD enzyme expression in the albino rat ovaries was in P0 (17.23 ± 5.34), and the lowest was in P3 (4.21 ± 0.76). The lowest MDA level was observed in the control group (K) and P3 compared to the other groups. The highest average antral follicle count and diameter were found in the albino rats exposed to 1.5 mg/kg BW lead acetate, and treated with 0.54 mg/kg BW zinc sulfate and 100 mg/kg BW α-tocopherol (group P3) compared to the other groups. The mechanisms of action of zinc and α-tocopherol work synergistically to decrease free radicals and ovarian damage. CONCLUSION: The results showed that a combination of 0.54 mg/kg BW zinc (Zn) and 100 mg/kg BW α-tocopherol can maintain the number and diameter of the antral follicles and reduce ovarian SOD expression and MDA levels in albino rats exposed to lead acetate.


Subject(s)
Antioxidants , alpha-Tocopherol , Rats , Female , Animals , Antioxidants/metabolism , alpha-Tocopherol/pharmacology , Lead/toxicity , Zinc/pharmacology , Rats, Wistar , Oxidative Stress , Superoxide Dismutase/metabolism , Free Radicals/pharmacology , Acetates/pharmacology
7.
J Biochem Mol Toxicol ; 37(11): e23455, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37437103

ABSTRACT

The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.


Subject(s)
Antioxidants , Oxidants , Humans , Antioxidants/pharmacology , Oxidants/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Free Radicals/chemistry , Free Radicals/pharmacology , Biomarkers/metabolism
8.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298743

ABSTRACT

Our research group previously found that broccoli sprouts possess neuroprotective effects during pregnancy. The active compound has been identified as sulforaphane (SFA), obtained from glucosinolate and glucoraphanin, which are also present in other crucifers, including kale. Sulforaphene (SFE), obtained from glucoraphenin in radish, also has numerous biological benefits, some of which supersede those of sulforaphane. It is likely that other components, such as phenolics, contribute to the biological activity of cruciferous vegetables. Notwithstanding their beneficial phytochemicals, crucifers are known to contain erucic acid, an antinutritional fatty acid. The aim of this research was to phytochemically examine broccoli, kale, and radish sprouts to determine good sources of SFA and SFE to inform future studies of the neuroprotective activity of cruciferous sprouts on the fetal brain, as well as product development. Three broccoli: Johnny's Sprouting Broccoli (JSB), Gypsy F1 (GYP), and Mumm's Sprouting Broccoli (MUM), one kale: Johnny's Toscano Kale (JTK), and three radish cultivars: Black Spanish Round (BSR), Miyashige (MIY), and Nero Tunda (NT), were analyzed. We first quantified the glucosinolate, isothiocyanate, phenolics, and DPPH free radical scavenging activity (AOC) of one-day-old dark- and light-grown sprouts by HPLC. Radish cultivars generally had the highest glucosinolate and isothiocyanate contents, and kale had higher glucoraphanin and significantly higher sulforaphane content than the broccoli cultivars. Lighting conditions did not significantly affect the phytochemistry of the one-day-old sprouts. Based on phytochemistry and economic factors, JSB, JTK, and BSR were chosen for further sprouting for three, five, and seven days and subsequently analyzed. The three-day-old JTK and radish cultivars were identified to be the best sources of SFA and SFE, respectively, both yielding the highest levels of the respective compound while retaining high levels of phenolics and AOC and markedly lower erucic acid levels compared to one-day-old sprouts.


Subject(s)
Brassica , Raphanus , Glucosinolates/chemistry , Brassica/chemistry , Raphanus/chemistry , Isothiocyanates/pharmacology , Free Radicals/pharmacology
9.
Curr Hypertens Rev ; 19(1): 7-18, 2023.
Article in English | MEDLINE | ID: mdl-37183397

ABSTRACT

Oxidative stress is one of the main mechanisms involved in the pathophysiology of arterial hypertension, inducing direct effects on the vasculature, and contributing to endothelial dysfunction and consequent impairment of vascular relaxation. Despite a large number of pharmacological treatments available, intolerable side effects are reported, which makes the use of natural antioxidants a promising and complementary alternative for the prevention and treatment of hypertension. From this perspective, the current review aims to investigate and characterize the main antioxidants of natural origin for the treatment of hypertension. Antioxidants act in the inhibition or extinction of chemical reactions involving free radicals and consequently reduce the occurrence of damage caused by these cellular components. The main natural antioxidants for treating hypertension include caffeic acid, ferulic acid, curcumin, apocynin, quercetin, lipoic acid, and lycopene. The effects associated with these antioxidants, which make them therapeutic targets for decreasing high blood pressure, include increased activation of antioxidant enzymes, stimulation of nitric oxide bioavailability, and reduction in angiotensin-converting enzyme activity, arginase, and NADPH oxidase, whose effects contribute to reducing oxidative stress, improving endothelial function, and preventing cardiovascular dysfunctions. Thus, several products with antioxidant properties that are available in nature and their application in the treatment of hypertension are described in the literature. The therapeutic effects of these products seem to regulate several parameters related to arterial hypertension, in addition to combating and preventing the deleterious effects related to the disease.


Subject(s)
Antioxidants , Hypertension , Humans , Antioxidants/adverse effects , Antihypertensive Agents/adverse effects , Hypertension/diagnosis , Hypertension/drug therapy , Oxidative Stress/physiology , Free Radicals/pharmacology , Free Radicals/therapeutic use
10.
J Biochem Mol Toxicol ; 37(6): e23349, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37009732

ABSTRACT

Oxidative stress is a pathological condition characterized by an overload of oxidant products, named free radicals, which are not well counteracted by antioxidant systems. Free radicals induce oxidative damage to many body organs and systems. In neonatal red blood cells, free-radical mediated-oxidative stress leads to eryptosis, a suicidal death process of erythrocytes consequent to alteration of cell integrity. Neonatal red blood cells are targets and at the same time generators of free radicals through the Fenton and Haber-Weiss reactions. Enhanced eryptosis in case of oxidative stress damage may cause anemia if the increased loss of erythrocytes is not enough compensated by enhanced new erythrocytes synthesis. The oxidative disruption of the red cells may cause unconjugated idiopathic hyperbilirubinemia in neonates. High levels of bilirubin are recognized to be dangerous for the central nervous system in newborns, however, many studies have highlighted the antioxidant function of bilirubin. Recently, it has been suggested that physiologic concentration of bilirubin correlates with higher antioxidant status while high pathological bilirubin levels are associated with pro-oxidants effects. The aim of this educational review is to provide an updated understanding of the molecular mechanisms underlying erythrocyte oxidant injury and its reversal in neonatal idiopathic hyperbilirubinemia.


Subject(s)
Jaundice, Neonatal , Infant, Newborn , Humans , Jaundice, Neonatal/pathology , Antioxidants/pharmacology , Oxidative Stress/physiology , Hyperbilirubinemia/pathology , Bilirubin , Erythrocytes , Free Radicals/pharmacology , Oxidants/pharmacology
11.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838870

ABSTRACT

Tamarind shell is rich in flavonoids and exhibits good biological activities. In this study, we aimed to analyze the chemical composition of tamarind shell extract (TSE), and to investigate antioxidant capacity of TSE in vitro and in vivo. The tamarind shells were extracted with 95% ethanol refluxing extraction, and chemical constituents were determined by ultra-performance chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). The free radical scavenging activity of TSE in vitro was evaluated using the oxygen radical absorbance capacity (ORAC) method. The antioxidative effects of TSE were further assessed in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated ADTC5 cells and tert-butyl hydroperoxide (t-BHP)-exposed zebrafish. A total of eight flavonoids were detected in TSE, including (+)-catechin, taxifolin, myricetin, eriodictyol, luteolin, morin, apigenin, and naringenin, with the contents of 5.287, 8.419, 4.042, 6.583, 3.421, 4.651, 0.2027, and 0.6234 mg/g, respectively. The ORAC assay revealed TSE and these flavonoids had strong free radical scavenging activity in vitro. In addition, TSE significantly decreased the ROS and MDA levels but restored the SOD activity in AAPH-treated ATDC5 cells and t-BHP-exposed zebrafish. The flavonoids also showed excellent antioxidative activities against oxidative damage in ATDC5 cells and zebrafish. Overall, the study suggests the free radical scavenging capacity and antioxidant potential of TSE and its primary flavonoids in vitro and in vivo and will provide a theoretical basis for the development and utilization of tamarind shell.


Subject(s)
Antioxidants , Tamarindus , Animals , Antioxidants/chemistry , Zebrafish , Chromatography, Liquid , Tandem Mass Spectrometry , Oxidative Stress , Flavonoids/chemistry , Plant Extracts/chemistry , Free Radicals/pharmacology
12.
IET Nanobiotechnol ; 17(3): 171-181, 2023 May.
Article in English | MEDLINE | ID: mdl-36708056

ABSTRACT

In this study, the nanoemulsions containing angelica essential oil (AEO) was used as a novel nano-carrier for enrichment of dairy dessert. Firstly, oil-in-water nanoemulsions were prepared by different levels of GE (1%, 5%, 10%, and 15%) as the dispersed phase, Tween 80 as surfactant with a constant surfactant to essential oil ratio (1:1), and distillated water as a continuous phase. Droplet size, free radical scavenging capacity, antimicrobial activity against gram-positive (Staphylococcus aureus (25923 ATCC)) and gram-negative (Escherichia coli H7 O157 (700728 ATCC)) were evaluated for produced nanoemulsions. The mean droplet size of nanoemulsion increased from 75 to 95 nm and antioxidant capacity also enhanced from 15.4% to 30.2% by increasing AEO level from 1% to 15%. Antimicrobial analysis by disk diffusion methods for nanoemulsions containing different levels of AEO cleared that nanoemulsions with high levels of AEO showed the stronger antimicrobial activity against both used bacteria and especially more activity against Staphylococcus aureus. The results of the total count and yeast and mould count show that the nanoemulsions with different levels of AEO have been effective on the number of microorganisms, particularly during storage. The incorporation of pure essential oil and nanoemulsions with different levels of AEO did not affect significantly the pH of different dessert samples however, they affected the dry matter and free radical scavenging capacity. Adding of nanoemulsions with different levels of AEO to the desserts had a considerable effect on the rheological properties including apparent viscosity, G', G", Tan δ and complex viscosity and all samples showed shear-thining behaviour. Results from organoleptic characteristics (taste, odour colour, mouthfeel and total acceptance) showed that enriched samples by nanoemulsions, particularly with higher level of AEO had higher sensorial scores. In general, samples containing free AEO (not encapsulated) had the lower scores in all organoleptic characteristics.


Subject(s)
Anti-Infective Agents , Escherichia coli O157 , Heracleum , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Emulsions/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Free Radicals/pharmacology
13.
Med Gas Res ; 13(3): 94-98, 2023.
Article in English | MEDLINE | ID: mdl-36571372

ABSTRACT

Reactive oxygen species and other free radicals cause oxidative stress which is the underlying pathogenesis of cellular injury in various neurological diseases. Molecular hydrogen therapy with its unique biological property of selectively scavenging pathological free radicals has demonstrated therapeutic potential in innumerable animal studies and some clinical trials. These studies have implicated several cellular pathways affected by hydrogen therapy in explaining its anti-inflammatory and antioxidative effects. This article reviews relevant animal and clinical studies that demonstrate neuroprotective effects of hydrogen therapy in stroke, neurodegenerative diseases, neurotrauma, and global brain injury.


Subject(s)
Antioxidants , Oxidative Stress , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Free Radicals/pharmacology , Hydrogen/pharmacology , Hydrogen/therapeutic use
14.
Int J Radiat Biol ; 99(2): 155-165, 2023.
Article in English | MEDLINE | ID: mdl-35549605

ABSTRACT

PURPOSE: The study of the radioactive role of natural and chemical substances on human and animal studies has been the subject of research by some researchers. Therefore, the review of some of the past and current studies conducted in this field, can provide helpful information to elucidate of the importance of radioprotective components in reducing radiation exposure side effects. METHODS: The authors search for keywords including In vitro, In vivo, Radioprotective, Ionizing radiation, and Vitamin in ScienceDirect, Scopus, Pubmed, and Google Scholar databases to access previously published articles and search for more reference articles on the role of radioprotective materials from natural and chemical compounds. RESULTS: Radiation exposure can produce reactive oxygen species (ROS) in the body, however most of which are eliminated by the body's natural mechanisms, but when the body's antioxidant systems do not have enough ability to neutralize free radicals, oxidative stress occurs, which causes damage to DNA and body tissues. Therefore, it is necessary use of alternative substances that reduce and inhibit free radicals. CONCLUSION: In general, recommended that antioxidant component(s) can be protect tissue damages in humans or animals, due to the their ability to scavenge free radicals generated by ionizing radiation.


Subject(s)
Radiation Injuries , Radiation Protection , Radiation-Protective Agents , Animals , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , DNA Damage , Oxidative Stress , Free Radicals/pharmacology , Radiation-Protective Agents/pharmacology
15.
BMC Complement Med Ther ; 22(1): 261, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207726

ABSTRACT

BACKGROUND: As the largest organ, the skin has been frequently affected by trauma, chemical materials, toxins, bacterial pathogens, and free radicals. Recently, many attempts have been made to develop natural nanogels that, besides hydrating the skin, could also be used as antioxidant or antibacterial agents. METHODS: In this study, the chemical composition of the Mentha spicata essential oil was first investigated using GC-MS analysis. Its nanoemulsion-based nanogel was then investigated; successful loading of the essential oil in the nanogel was confirmed using FTIR analysis. Besides, nanogel's antioxidative, anticancer, and antibacterial activities were investigated. RESULTS: Carvone (37.1%), limonene (28.5%), borneol (3.9%), ß-pinene (3.3%), and pulegone (3.3%) were identified as five major compounds in the essential oil. By adding carboxymethylcellulose (3.5% w/v) to the optimal nanoemulsion containing the essential oil (droplet size of 196 ± 8 nm), it was gelified. The viscosity was fully fitted with a common non-Newtonian viscosity regression, the Carreau-Yasuda model. The antioxidant effect of the nanogel was significantly more potent than the essential oil (P < 0.001) at all examined concentrations (62.5-1000 µg/mL). Furthermore, the potency of the nanogel with an IC50 value of 55.0 µg/mL was substantially more (P < 0.001) than the essential oil (997.4 µg/mL). Also, the growth of Staphylococcus aureus and Escherichia coli after treatment with 1000 µg/mL nanogel was about 50% decreased compared to the control group. Besides, the prepared electrospun polycaprolactone-hydroxypropyl methylcellulose nanofibers mat with no cytotoxic, antioxidant, or antibacterial effects was proposed as lesion dressing after treatment with the nanogel. High potency, natural ingredients, and straightforward preparation are advantages of the prepared nanogel. Therefore, it could be considered for further consideration in vivo studies.


Subject(s)
Bacterial Toxins , Mentha spicata , Nanofibers , Oils, Volatile , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacterial Toxins/pharmacology , Carboxymethylcellulose Sodium/pharmacology , Escherichia coli , Free Radicals/pharmacology , Hypromellose Derivatives/pharmacology , Limonene/pharmacology , Mentha spicata/chemistry , Microbial Sensitivity Tests , Nanogels , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Polyesters , Polyethylene Glycols , Polyethyleneimine
16.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144568

ABSTRACT

Phytocosmetic is an important aspect of traditional medicine in several cultures. Researchers are now focusing to find new and effective ingredients of natural origin. Propolis is a natural beehive product extensively used in traditional medicine. We aimed in the present study to investigate the potential use of propolis as an aesthetic and phytotherapeutic constituent in phytocosmetics. Propolis was extracted using 80% ethanol. Total phenolic and flavonoid contents were determined calorimetrically. Free radical scavenging ability and reducing capacity were evaluated using four assays and expressed as IC50 values. Antibacterial activity was evaluated by the determination of minimum inhibitory concentration (MIC) on 11 Gram-positive and Gram-negative bacteria. The wound healing activity of 30% ethanolic extract and propolis ointment was studied using excision wounds in the anterio-dorsal side of the rats. The phenolic acid composition of the tested propolis was investigated using UFLC/MS-MS analysis. The tested propolis was rich in phenolic and flavonoid content and demonstrated an interesting antibacterial and antioxidant activity. Wounds treated with propolis appear to display a lesser degree of inflammation. Chemical analysis led to the identification of 11 phenolics. Among them, five are considered as main compounds: Chlorogenic acid (48.79 ± 5.01 ng/mL), Gallic acid (44.25 ± 6.40 ng/mL), Rutin (21.12 ± 3.57 ng/mL), Caffeic acid (28.19 ± 4.95 ng/mL), and trans-cinnamic acid (20.10 ± 6.51 ng/mL). Our results indicated that propolis can not only be used as a cosmetic ingredient but also be used as a preventative and curative constituent, which might be used as a barrier when applied externally on infected and non-infected skin.


Subject(s)
Propolis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antioxidants/chemistry , Chlorogenic Acid/pharmacology , Ethanol/pharmacology , Flavonoids/analysis , Flavonoids/pharmacology , Free Radicals/pharmacology , Gallic Acid/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Ointments/pharmacology , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Propolis/chemistry , Rats , Rutin/pharmacology
17.
Pestic Biochem Physiol ; 187: 105202, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127053

ABSTRACT

Overproduction of free radicals and inflammation could lead to maneb (MB)- and paraquat (PQ)-induced toxicity in the polymorphonuclear leukocytes (PMNs). Cyclooxygenase-2 (COX-2), an inducible COX, is imperative in the pesticides-induced pathological alterations. However, its role in MB- and PQ-induced toxicity in the PMNs is not yet clearly deciphered. The current study explored the contribution of COX-2 in MB- and PQ-induced toxicity in the PMNs and the mechanism involved therein. Combined MB and PQ augmented the production of free radicals, lipid peroxides and activity of superoxide dismutase (SOD) in the rat PMNs. While combined MB and PQ elevated the expression of COX-2 protein, activation of nuclear factor-kappa B (NF-κB) and phosphorylation of c-Jun N-terminal kinase (JNK), release of mitochondrial cytochrome c and levels of procaspase-3/9 were attenuated in the PMNs. Celecoxib (CXB), a COX-2 inhibitor, ameliorated the combined MB and PQ-induced modulations in the PMNs. MB and PQ augmented the free radical generation, COX-2 protein expression, NF-κB activation and JNK phosphorylation and reduced the cell viability of cultured rat PMNs and human leukemic HL60. MB and PQ elevated mitochondrial cytochrome c release and poly (ADP-ribose) polymerase cleavage whilst procaspase-3/9 levels were attenuated in the cultured PMNs. MB and PQ also increased the levels of phosphorylated c-jun and caspase-3 activity in the HL60 cells. CXB; SP600125, a JNK-inhibitor and pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, rescued from MB and PQ-induced changes in the PMNs and HL60 cells. However, CXB offered the maximum protection among the three. The results show that COX-2 activates apoptosis in the PMNs following MB and PQ intoxication, which could be linked to NF-κB and JNK signaling.


Subject(s)
Maneb , Pesticides , Adenosine Diphosphate/metabolism , Animals , Apoptosis , Caspase 3/metabolism , Celecoxib/metabolism , Celecoxib/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Cyclooxygenase 2 Inhibitors/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cytochromes c/metabolism , Free Radicals/metabolism , Free Radicals/pharmacology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/pharmacology , Lipid Peroxides/metabolism , Lipid Peroxides/pharmacology , NF-kappa B/metabolism , Neutrophils/metabolism , Oxidative Stress , Paraquat/toxicity , Pesticides/pharmacology , Rats , Ribose/metabolism , Ribose/pharmacology , Superoxide Dismutase/metabolism
18.
Oncology ; 100(10): 555-568, 2022.
Article in English | MEDLINE | ID: mdl-35850102

ABSTRACT

BACKGROUND: Altered glucose metabolism is associated with chemoresistance in colorectal cancer (CRC). This study aimed to illustrate the molecular mechanisms of glucose-mediated chemoresistance against irinotecan, a topoisomerase I inhibitor, focusing on the distinct roles of metabolites such as pyruvate and ATP in modulating cell death and proliferation. METHODS: Four human CRC cell lines, tumorspheres, and mouse xenograft models were treated with various doses of irinotecan in the presence of various concentrations of glucose, pyruvate, or ATP-encapsulated liposomes. RESULTS: In this study, human CRC cell lines treated with irinotecan in high glucose displayed increased cell viability and larger xenograft tumor sizes in mouse models compared to those treated in normal glucose concentrations. Irinotecan induced apoptosis and necroptosis, both mitigated by high glucose. Liposomal ATP prevented irinotecan-induced apoptosis, while it did not affect necroptosis. In contrast, pyruvate attenuated the receptor-interacting protein kinase 1/3-dependent necroptosis via free radical scavenging without modulating apoptotic levels. Regarding the cell cycle, liposomal ATP aggravated the irinotecan-induced G0/G1 shift, whereas pyruvate diminished the G0/G1 shift, showing opposite effects on proliferation. Last, tumorsphere structural damage, an index of solid tumor responsiveness to chemotherapy, was determined. Liposomal ATP increased tumorsphere size while pyruvate prevented the deformation of spheroid mass. CONCLUSIONS: Glucose metabolites confer tumor chemoresistance via multiple modes of action. Glycolytic pyruvate attenuated irinotecan-induced necroptosis and potentiated drug insensitivity by shifting cells from a proliferative to a quiescent state. On the other hand, ATP decreased irinotecan-induced apoptosis and promoted active cell proliferation, contributing to tumor recurrence. Our findings challenged the traditional view of ATP as the main factor for irinotecan chemoresistance and provided novel insights of pyruvate acting as an antioxidant responsible for drug insensitivity, which may shed light on the development of new therapies against recalcitrant cancers.


Subject(s)
Colorectal Neoplasms , Glucose , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/therapeutic use , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Free Radicals/pharmacology , Free Radicals/therapeutic use , Glucose/metabolism , Glucose/pharmacology , Glucose/therapeutic use , Humans , Irinotecan/pharmacology , Liposomes/pharmacology , Liposomes/therapeutic use , Mice , Neoplasm Recurrence, Local/drug therapy , Protein Kinases/pharmacology , Protein Kinases/therapeutic use , Pyruvic Acid/pharmacology , Pyruvic Acid/therapeutic use , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use
19.
J Complement Integr Med ; 19(3): 513-530, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35749142

ABSTRACT

Heavy metals are known to be carcinogenic, mutagenic, and teratogenic. Some heavy metals are necessary while present in the growing medium in moderate concentrations known to be essential heavy metals as they required for the body functioning as a nutrient. But there are some unwanted metals and are also toxic to the environment and create a harmful impact on the body, which termed to be non-essential heavy metals. Upon exposure, the heavy metals decrease the major antioxidants of cells and enzymes with the thiol group and affect cell division, proliferation, and apoptosis. It interacts with the DNA repair mechanism and initiates the production of reactive oxygen species (ROS). It subsequently binds to the mitochondria and may inhibit respiratory and oxidative phosphorylation in even low concentrations. This mechanism leads to damage antioxidant repair mechanism of neuronal cells and turns into neurotoxicity. Now, phytochemicals have led to good practices in the health system. Phytochemicals that are present in the fruits and herbs can preserve upon free radical damage. Thus, this review paper summarized various phytochemicals which can be utilized as a treatment option to reverse the effect of the toxicity caused by the ingestion of heavy metals in our body through various environmental or lifestyles ways.


Subject(s)
Antioxidants , Metals, Heavy , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Free Radicals/metabolism , Free Radicals/pharmacology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Oxidative Stress , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/pharmacology
20.
Free Radic Res ; 56(3-4): 328-341, 2022.
Article in English | MEDLINE | ID: mdl-35769030

ABSTRACT

Carbon materials possess powerful antioxidant activity that might be promising for the development of new generation treatment of cardiovascular diseases, ischemic conditions, and reperfusion injury. The present study aimed to characterize the structure of nanosized graphene oxide (GrO) sample and evaluate the antioxidant efficacy of GrO in situ models of oxidative stress widely used in pre-clinical studies. The structure and surface chemistry of the initial samples were analyzed via LDS, RAMAN, LDI, TPD-MS, and FTIR methods. The GrO showed a strong ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals and have a total antioxidant capacity. The DFT quantum-chemical calculation demonstrated the radical scavenging effect of GrO proceeding due to the physical adsorption of the free radical on the surface. For evaluation of the antioxidant effect of GrO in situ, we used the model of ischemia-reperfusion (I/R) of Langendorff isolated rat heart. We revealed that intravenous pretreatment of Wistar male rats with GrO significantly increased resistance of myocardium to I/R, improved restoration of heart function, prevented non-effective oxygen utilization, and I/R-induced reactive oxygen species production in cardiac tissue. Thus, our data demonstrate the perspective of further use of GrO for the development of antiischemic therapy.


Subject(s)
Graphite , Myocardial Reperfusion Injury , Animals , Antioxidants/pharmacology , Free Radicals/pharmacology , Graphite/pharmacology , Heart , Male , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...